P(x)=(60x-0.3x^2)-(5x+14)

Simple and best practice solution for P(x)=(60x-0.3x^2)-(5x+14) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(x)=(60x-0.3x^2)-(5x+14) equation:



(P)=(60P-0.3P^2)-(5P+14)
We move all terms to the left:
(P)-((60P-0.3P^2)-(5P+14))=0
We calculate terms in parentheses: -((60P-0.3P^2)-(5P+14)), so:
(60P-0.3P^2)-(5P+14)
We get rid of parentheses
-0.3P^2+60P-5P-14
We add all the numbers together, and all the variables
-0.3P^2+55P-14
Back to the equation:
-(-0.3P^2+55P-14)
We get rid of parentheses
0.3P^2-55P+P+14=0
We add all the numbers together, and all the variables
0.3P^2-54P+14=0
a = 0.3; b = -54; c = +14;
Δ = b2-4ac
Δ = -542-4·0.3·14
Δ = 2899.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-\sqrt{2899.2}}{2*0.3}=\frac{54-\sqrt{2899.2}}{0.6} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+\sqrt{2899.2}}{2*0.3}=\frac{54+\sqrt{2899.2}}{0.6} $

See similar equations:

| 5025=0.06+0.04(100000-x) | | 8=4x-5x+9 | | -24=7y-21-4y+15 | | 6+3(6x-7)=7x+-15 | | 6+3(6x-7)=5x+-7 | | 80+60+7+2x=180 | | 6x+1+77=90 | | x+5/8=1−x+6/7 | | 6+3(6x-7)=4x+22 | | 90+30+7x+4=180 | | -4×-2y=10 | | x+2=62+4 | | -4(2x+5)+2x+3=−4(2x+5)+2x+3=11 | | 400x=125 | | d/6+d/4=120 | | 360=7x+10+2x+20+2x+17 | | 137=(8x+17) | | 3x-9=+2x+4 | | f(3)=6(3-1)+9 | | d/6+720+d/4=840 | | x-11+x+10+31+2x-42=180 | | x(2x+11)+53=90 | | 2(x+3)+2=3(2x+4)-5x | | 2(2x-11)+6+-4x=16 | | X/2-2=x-4/4 | | .7x=67 | | -3(x-1)=2(1-2x)-2x+1 | | 18-3x=10x+109 | | x+14+x+14=180 | | 10(x-7)^2=440 | | 2x+-7=-3x+18 | | 1.4-x/5=6.3 |

Equations solver categories